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Fig. 1: DextrAH-RGB (Dexterous Arm-Hand RGB) is an end-to-end RGB-based policy that can dexterously grasp a wide variety of objects.

Abstract—One of the most important, yet challenging, skills
for a dexterous robot is grasping a diverse range of objects.
Much of the prior work has been limited by speed, generality,
or reliance on depth maps and object poses. In this paper, we
introduce DextrAH-RGB, a system that can perform dexterous
arm-hand grasping end-to-end from RGB image input. We train
a privileged fabric-guided policy (FGP) in simulation through
reinforcement learning that acts on a geometric fabric controller
to dexterously grasp a wide variety of objects. We then distill
this privileged FGP into a RGB-based FGP strictly in simulation
using photorealistic tiled rendering. To our knowledge, this
is the first work that is able to demonstrate robust sim2real
transfer of an end2end RGB-based policy for complex, dynamic,
contact-rich tasks such as dexterous grasping. DextrAH-RGB is
competitive with depth-based dexterous grasping policies, and

generalizes to novel objects with unseen geometry, texture, and
lighting conditions in the real world. Videos of our system
grasping a diverse range of unseen objects are available at
https://dextrah-rgb.github.io/.

I. INTRODUCTION

Controlling multi-fingered robotic hands to naturally and
quickly grasp objects has remained a longstanding challenge in
robotics. Ideally, techniques must leverage visual, tactile, and
proprioceptive sensory streams to generalize to novel objects
and quickly react in dynamic, anthropocentric environments.
With such capabilities, multi-fingered robots would become a
pertinent technology to society with many relevant applica-
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tions.
Recently, significant progress has been made in leverag-

ing reinforcement learning in simulation for manipulation
and locomotion. Vectorized physics and sensor simulation
have allowed practitioners to easily scale robot experience in
dynamic environments, enabling reactive behavior informed
by both proprioceptive and vision-based inputs. Moreover,
techniques like domain randomization facilitate learning robust
and adaptive policies that successfully transfer from simulation
to the real world.

Despite these powerful tools, the efficacy of many current
strategies for learning manipulation skills remains limited.
Existing systems almost always factorize the problem of creat-
ing a grasping policy which avoids training direct end-to-end
RGB-to-action visuomotor policies. One common approach is
to cast the problem as a kinematic one of finding a static
grasp configuration and leveraging motion planning tools to
acquire the targeted grasp. These methods are not continuously
reactive and struggle with disturbances, partial observability,
and unseen objects. Other methods that do continuous vision-
based grasping via simulation are almost always restricted
to depth cameras as most simulators are unable to render
high-fidelity images efficiently at scale. Although methods
relying on depth readings are fairly successful, IR-based depth
cameras have issues with translucent and reflective objects and
direct sunlight. They are also a source of various geometric
distractors that are not easily simulated at scale.

To address these challenges, we present DextrAH-RGB, a
dexterous arm-hand grasping policy that computes high-rate
actions directly from RGB input. Our main contributions are:
1) simulation-only training of an RGB-based FGP, 2) including
significant scaling of the perceptual architecture to handle
the substantially more challenging (stereo) RGB processing,
and 3) successful deployment of our RGB policy in the real
world to achieve safe, reliable, and reactive grasping behaviors.
To our knowledge, this is the first work to demonstrate
successful sim2real transfer of RGB policies for a robot
hand-arm system for such complex, contact-rich tasks. Our
method allows for training of both monocular and stereo RGB
policies and can straightforwardly be extended to an arbitrary
number of cameras in the scene.

II. RELATED WORK

Dexterous grasping has been studied extensively with a
rich history of prior work. Classical methods typically involve
optimizing analytic grasp metrics [16, 5, 7]. These works
are typically limited to synthesizing precision grasps. They
also rely on groundtruth object models and their performance
suffers when accurate models are unavailable [13]. Data
driven methods to dexterous grasping involve leveraging grasp
datasets to train grasp planning networks. Some examples
of these datasets include MultiDex [11], DexGraspNet [27],
Grasp’D-1M [25], and Get a Grip [13]. A lot of past work in-
volves grasp synthesis based on pointcloud/depth information.
Not only do they capture the geometry of the objects, but are
also more feasible to simulate compared to high-fidelity RGB

rendering. UniDexGrasp learns dexterous grasping policies
from full pointclouds [31] and UniDexGrasp++ improved upon
this method by introducing a geometry-aware curriculum [26].
Both of these works only demonstrate results in simulation.
DexRepNet [12] learns a representation that combines spatial
geometric features of the hand and object and demonstrate suc-
cessful sim2real results; however, they require access to CAD
models of their objects in order to register pointclouds for
pose estimation, thereby limiting the generalizability of their
method. DexPoint is able to demonstrate successful sim2real
transfer of their pointcloud policies. Their key observation
is that when deploying in the real world, there are typically
many points on the finger that are missing due to occlusions.
They use the proprioceptive states of the robot to perform
forward kinematics on the hand and sample various points on
the mesh of the fingers to fill in the missing points and feed this
combined pointcloud into their policy [19]. Agarwal et al. [1]
predict a pre-grasp pose by matching DINO-ViT features with
previous instances of objects. They then have a proprioceptive-
only policy execute the motion to realize the grasp. The policy
predicts weights for different eigengrasps that they calculate
by performing PCA on a set of grasp poses gathered from
motion capture data. Singh et al. pretrain their policies on
human videos [22] by reconstructing objects in simulation
and retargeting human hand motions to robot hand actions.
After pre-training, they are able to demonstrate impressive
sim2real results by finetuning with PPO in simulation to train
a policy conditioned on the depth image. The work that is
most similar to ours is DextrAH-G [14]. This work also uses
a student-teacher distillation framework, but distill instead to a
simpler depth processing policy. They first train a state-based
teacher policy to pick up objects from the Visual Dexterity [3]
dataset. In order to allow for more functional grasps, they
transform the action space for the hand into a PCA subspace
of the robot hand finger joint motions derived from retargeting
human grasping data. This action space is also embedded into
a geometric fabric [20] to ensure safe and reactive controllers.
The teacher is then distilled into the depth-based student and
exhibits remarkable sim2real transfer, being able to grasp
objects unseen in the training set.

III. DEXTRAH-RGB

In this section, we detail the training of our RGB-based
policy. To ensure safety of the robot, we use geometric fabrics.
This also has the benefit of exposing an action space that lends
itself well to the task of dexterous grasping. In fact, we use
exactly the same geometric fabric controller as in [14]. With
this vectorized controller, we first train a state-based, teacher
fabric guided policy (FGP) in simulation using reinforcement
learning. We then use an online version of DAgger to distill
the teacher FGP into a student FGP. Crucially, the student does
not receive any object state information and, instead, receives
either one or two RGB images from a set of cameras in a stereo
configuration as input. This student FGP is trained purely from
simulated data and deployed to the real world. The teacher
policy took 62 hours to train on a single 8-GPU H100 node



and the student policy took 53 hours to train on a single 4-
GPU L40S node. We use L40S GPUs for distillation as they
contain the RTX cores necessary for high-fidelity rendering.

Fig. 2: The first stage of our pipeline involves training a state-based
teacher policy in simulation using PPO. We adopt an asymmetric
actor critic framework whereby the teacher policy receives noisy
state observations whereas the critic receives privileged (and perfect)
state observations. This is done to ensure that the policy is not
overly reliant on behaviors that require accurate state estimates as
this can make it harder to distill into a vision-based policy. The
teacher policy uses an LSTM layer to enable reasoning over historical
context, enabling adaptation to current dynamics. We add dense skip
connections similar to [14] to improve stability and performance of
the policy.

Fig. 3: The second stage of our pipeline involves distilling the pre-
viously trained state-based teacher policy into a vision-based student
policy. We use an online implementation of DAgger [21] where at
each step, the observations for the teacher and student are queried
and fed into the respective networks. The student is supervised to
minimize the KL-divergence between its action distribution and that
of the teacher. Furthermore, we add an auxiliary loss for predicting
the 3D object position. The student architecture consists of a encoder
which takes as input images from the left and right camera and
outputs a stereo embedding which is then concatenated with the
standard robot proprioceptive observations and passed into an LSTM
followed by an MLP. Similar to the teacher, dense connections are
used to improve the performance of the policy.

A. Geometric Fabrics and Fabric-Guided Policies (FGPs)

Geometric fabrics are second-order dynamical systems that
generalize classical mechanics and can be used to design
safe, reactive, and stable controllers. Desired behaviors of a
robot can be specified by the geometric fabric controller and

then realized on a real robot via an appropriate torque law
(e.g. joint-level PD control) [30]. We create these behaviors
through a combination of geometric and forcing fabric terms.
Geometric terms are used for specifying the nominal behavior
of the controller, and crucially, create speed-independent paths.
This ensures that no matter how fast or slow the robot moves,
it still follows the same path. On the other hand, forcing
terms serve to perturb the robot from its nominal behavior to
complete a specific task. For example, we may want the robot
to reach a target, or in a more advanced setting, have an FGP
complete a grasping task. Where possible, we aim to push
the desired behavior into the underlying geometry because
multiple forcing terms can fight with each other resulting in
a collapse of the desired behavior. For the purposes of this
work, we use the same geometric fabric and action space as
in DextrAH-G, and briefly outline the geometric fabric (refer
to [14] for in-depth details).

The geometric fabric possesses a few different behaviors.
First, collision avoidance behavior is embedded into both the
underlying geometric and forcing fabric terms to prevent self
and environmental collision. Most of the collision avoidance
is enforced by the geometric term and only when two objects
are close to collision does the forcing term activate to push
them apart. Due to the kinematic redundancy of the robot, we
add a geometric attraction term that nominally brings the robot
to an elbow-out, fingers-curled configuration. This term guides
the overall posture of the arm without preventing goal-reaching
behavior in the palm and PCA action spaces. The action space
for the RL policy is the 6-dof pose of the palm and a reduced,
5-dimensional PCA action space for the hand. In these spaces,
we add two forcing terms, one for the palm pose, and another
for the PCA finger space which allow goal reaching in these
spaces. Consequently, FGPs emit parametric forces on the
geometric fabric by issuing targets in these spaces. Finally, we
add forcing terms to ensure that the robot remains within its
joint position limits as this is a hardware safety critical aspect.
These fabric terms, and their associated priority metrics, allow
us to solve for the net fabric acceleration which is further
modulated to meet acceleration and jerk limits of the robot.
The desired acceleration is forward integrated at 60 Hz using
an approximate second-order Runge-Kutta scheme and the
time-integrated position and velocity states are passed as
targets to the underlying joint PD controller.

B. State-based Teacher FGP Training

We train DextrAH-RGB in simulation at scale across many
different objects using NVIDIA Isaac Lab. Due to the sample
inefficiency of RL, we do not directly train an RGB-based
policy from scratch using PPO. Instead, we first train a
teacher FGP which receives privileged state information. We
then distill the teacher policy into an RGB-based student
policy. The teacher FGP is trained via PPO with the same
hyperparameters as in [14] with the policy network consisting
of a single 512 unit LSTM layer followed by two MLP layers
of 512 units. The critic consists of a 2048 unit LSTM with
an MLP with [1024, 512] units. We also add skip connections



around the LSTM before passing through the final layers. This
architecture is similar to the connections in DenseNet [10]
and previous work [24] has shown that dense architectures
are better for policy learning. The inputs to these networks
consist of the measured robot joint position and velocity, the
measured position and velocity of fingertip and palm points,
the object pose, the object position goal, a one-hot encoding
of objects, the last FGP action, and the position, velocity, and
acceleration of the fabric. We use an asymmetric actor-critic
formulation where the full privileged observations are passed
into the critic whereas the teacher receives a noisy subset of
the critic observations. This is to ensure that the teacher does
not learn behaviors that rely on accurate state estimation as
this can impact how well the teacher can be distilled into the
student. Finally, the critic also receives measured robot joint
torque and measured forces at the fingertip and palm points.
Figure 2 illustrates our teacher training pipeline.

We use a simplified reward function compared to [14].
We have four reward terms: a reward for driving the hand
close to the object, a reward for moving the object to a
position goal in freespace, a reward for lifting the object
off the table, and a regularization penalty to stretch the
fingers open. The first reward term is defined in terms of
dhand obj , which represents the maximum distance between
any point on the Allegro hand (four positions of the fingertip
and one position of the palm) and the object: dhand obj =
maxi∈{palm pos,fingertips} ∥xi − xobj∥. We then have the reward
term as rhand obj = exp(−10 dhand obj). The goal reward
is defined as robj goal = exp(−βobj goal ∥xobj − xgoal∥).
The lifting reward is defined as rlift = exp(−βlift (xobj

z −
xgoal
z )2), where z is the vertical direction. Lastly, the reg-

ularization reward term prevents the fingers from curling too
much: rcurl = −βcurl∥qhand−qcurl∥2, where qcurl represents
a configuration. All β coefficients are positive scalars. The fi-
nal reward is defined as a weighted sum of these reward terms:
r = whand objrhand obj + wobj goalrobj goal + wliftrlift +
wcurlrcurl.

Similar to [18, 8], we leverage Automatic Domain Random-
ization (ADR) when training our teacher policy. It induces
a learning curriculum that progressively increases the task
and environmental condition difficulty as the agent’s skill im-
proves. In this work, we formulate ADR by setting the initial
and terminal values or ranges of various parameters. When
policy performance is sufficiently high, the values or ranges
of the various parameters are linearly incremented towards the
terminal settings. The granularity of the increments is specified
in advance. Unlike [8], all parameters under ADR control are
shifted in tandem toward their maximal settings. The terminal
values for the various parameters are reasonably set, and we
desire policies to reach these maximal values. See Table IV
for more details about the parameters ADR controls and their
initial and terminal ranges. Figure 4 illustrates how the ranges
are adjusted towards the terminal ranges.

Finally, we adopt four important teacher FGP training
settings that depart from [14]. First, ADR scales the velocity
targets for the PD controller from 1 to 0. Non-zero velocity

Fig. 4: For all physics parameters pi, the initial values for pi_lo and
pi_hi are initialized to piinit. As the policy starts performing better,
pi_lo is decremented by ∆n and pi_hi is incremented by ∆n. The
parameter value ranges are constantly increased until they reach the
terminal values pi_loterminal and pi_hiterminal.

targets allow a faster dynamic response of the robot which is
beneficial to RL exploration. Ultimately zeroing the velocity
targets allow us to train an FGP conditioned on these dy-
namics, which is in line with the FGPs in [14]. Next, ADR
scales all velocity and acceleration inputs to the FGP from 1
to 0. This forces the FGP to leverage its recurrency to reason
over position-only dynamics to avoid relying on higher-order
signals that are state estimated. Instead, FGPs will only rely on
direct observables, avoiding various nuances and errors in state
estimation. Third, to further promote effective RL exploration
through faster motion, we time-integrate the fabric differential
equation two timesteps for every simulation step while ADR
increases fabric damping from 10 to 20. The former increases
the speed of motion, while the latter dials the speed back in a
more continuous fashion that is deployable in the real world.
Finally, we modify the control logic for the disturbance wrench
applied to the object for grasping. In [14], the wrench activates
when the object has been lifted. In this work, the wrench
activates when the hand is 0.3 m away from the object center.
This ensures that the object can start moving before the hand
secures a grasp, which promotes even more reactive policies.
These settings are carried over for training the subsequent
student FGP as well.

C. RGB Student FGP Training

To train the RGB-based policy, we leverage student-teacher
distillation and use an online version of DAgger [21], similar
to DextrAH-G [14]. Our training pipeline for this stage is
depicted in Figure 3. The student receives proprioceptive data
in the form of robot joint states and velocities, as well as
two RGB images corresponding to the left and right camera.
We opted to use this stereo camera setup to allow the student
to implicitly infer depth from the images. We use the Isaac
Lab [17] simulation framework which offers ray-traced tiled
rendering functionality to allow for fast and realistic rendering
in each environment.

To create realistic scenes, we follow a similar method as
Synthetica [23]. We randomize dome-light HDRI backgrounds
with a probability of 30%. At the beginning of every episode,
the material properties such as albedo tint, roughness, metal-
lic constant, and specularity of the robot, table, and object
are randomized. Furthermore, the texture of the table and
objects are also randomized. The objects we used initially
came textureless, so we bind textures from random, everyday
objects found in the Omniverse Asset Library. Although the



textures may not semantically match the geometry because
the UV mapping is completely off, the objects will still look
somewhat realistic. Figure 5 shows a comparison between
the original, textureless meshes, and the subsequently textured
meshes. Along with these randomizations, we also add data
augmentations such as random background, color jitter, and
motion blur. Tables V and VI contains more details about
the randomization ranges and probabilities. We set the ADR
increment to the maximum when training the student. Figure 6
shows various examples of images rendered from the left
camera. The top row shows the camera renderings from the
simulation with various randomizations applied to the lighting
and materials. The bottom row shows how the images look
after going through the aforementioned data augmentations.

(a) Example meshes from the Visual Dexterity dataset with no texture.

(b) Random texture maps of everyday objects binded to the meshes.

Fig. 5: (a) shows an example subset of object meshes with no texture.
(b) Shows those meshes with random textures binded to them.

The architecture of the student is shown in Figure 3. We
chose a stereo-based setup because we found that stereo
policies performed better than monocular ones in simulation
(detailed ablations can be found in Section IV-A). The policy
takes in two images that are of shape 320×240. The left and
right images are fed into a stereo encoder, which is shown
in Figure 7a. The images are encoded in a Siamese manner
through a pre-trained ResNet-18 encoder [9]. This encoder has
the last two layers removed. For each image, the output of the
ResNet encoder is a 40960-dimensional feature vector. Using
an MLP, each of these feature vectors is projected down to
a 16384-dimensional vector. This is then reshaped to produce
128 128-dimensional tokens per image. The tokens for the left
and right images are then passed into a transformer that also
takes as input a learnable [embed] token. The transformer
consists of two layers, for which the [embed] token attends
to all the other tokens, whereas tokens from one image are
only allowed to attend to tokens of the other image or the

[embed] token. This cross-attention between tokens in one
image and the tokens in the other is meant to allow for some
form of implicit stereo matching in order to determine the
depth of objects in the scene. The cross-attention mask we use
is depicted in Figure 7b. This design decision was inspired
by DUSt3R [28] which performed cross-attention between
tokens of different image features in order to perform multi-
view stereo reconstruction. We then pass the output for the
learnable [embed] token into an MLP layer to arrive at a
64-dimensional stereo embedding of the two images. This is
similar to how ViT [6] uses a learnable [CLS] token and
feeds its corresponding output into an MLP to ensure that
the output isn’t biased to any particular input token from
the image. The embedding vector is concatenated with the
proprioceptive input and fed into an LSTM with 512 units. The
output of the LSTM is concatenated with the input to it and fed
into an MLP. The MLP has three layers with [512, 512, 256]
units. The output from the LSTM and input from this MLP
are concatenated and fed into an auxiliary head that predicts
the object position which is just a single MLP with [512, 256]
units. All activations are elu. The inputs to the student FGP
are the same as the teacher FGP except that the object pose
and one-hot encoding are replaced with the stereo-RGB pair.
During training, we make sure to finetune the ResNet encoder
as this produces the most performant policies. Due to memory
constraints, we cast all of the ResNet weights to bf16.

The student outputs the same actions as the teacher.
It is jointly supervised on the imitation loss and auxil-
iary loss with L = Laction + Laux, where Laction =
DKL(πstudent∥πteacher), and Laux = ∥x̂obj − xobj∥. xobj

refers to the groundtruth object position and x̂obj is the
network’s prediction of the object position. For the imitation
loss, we chose to use a KL loss instead of an l2 loss on
the mean and variance because we noticed across all 4 seeds
that were tested, policies trained on the KL loss always out-
performed their l2 counterparts. Since the variance for both
the teacher and student policies are fixed, the error in the
variance is driven to zero. Thus, the KL loss effectively re-
duces to (µstudent−µteacher)

⊤Σ−1
teacher(µstudent−µteacher).

Since we use diagonal Gaussians, this further reduces to
Σi

1
σ2
i
(µi

student − µi
teacher)

2. This prioritizes driving the error
to zero along dimensions with lower variance which is more
expressive than the standard l2 loss which weighs the error in
all dimensions equally.

During teacher training, the maximum episode length is
10 seconds. This is to give the teacher sufficient time for
exploration to lift the object and to ensure that once the
object is lifted, it remains firmly grasped. However, if we
train the student with the same maximum episode length,
then most of the episode will involve the object already
being lifted up in the air. The main divergence between
the student and teacher is likely in the beginning of the
episode when the teacher is trying to grasp the object, and
so with a longer episode, this portion of the trajectory will be
proportionately de-emphasized. However, it is still imperative
to have a sufficiently long episode so that the student policy



Fig. 6: The top row shows the left camera renderings for different environments in simulation. The bottom row shows various data
augmentations applied to these sim renderings that are passed to the student policy.

can learn important recovery behaviors if it is unable to grasp
the object on the first try. Thus, when distilling the student,
we timeout the episode early if the object is held in the air for
2 seconds. Finally, the student FGP is trained on the terminal
ADR settings which are always achieved by the associated
teacher FGP chosen for distillation.

IV. EXPERIMENTS

A. Architecture Ablations

In this section, we conduct ablation studies to justify our
design decisions. Specifically, we compare the performance of
a monocular policy versus a stereo policy, with results summa-
rized in Table I. Performance is measured as the success rate
of the student policy relative to the teacher policy, averaged
across three seeds. Additionally, we evaluate the impact of
the auxiliary loss in the object position prediction and the
effectiveness of incorporating a transformer into the encoder.
All the different model types are distilled from the same three
teacher policies. The results show a clear performance boost
when using a stereo configuration compared to a monocular
one. This is expected, as stereo vision provides additional in-
formation for depth perception and computing the object’s 3D
position. This advantage is further reflected in the positional
error, which decreases by nearly 1 cm in the stereo setup.
We also evaluate the importance of the transformer. In the
stereo case, the transformer corresponds to the architecture
in Figure 7a, whereas in the monocular case it is a full
self-attention based transformer encoder. The architectures
without the transformer have the embedding from the ResNet
backbone concatenated directly with policy observations and
fed into the LSTM. Adding the transformer module to the
stereo model enhances performance, highlighting its role in
improving policy performance. Lastly, using a frozen ResNet-
18 encoder or one trained from scratch did not perform
as well as the finetuned encoder. This highlights another

benefit of RGB-based policies which is that they can leverage
previously learned representations from pre-training on large-
scale datasets.

Model Type Performance ↑ Pos Error (cm) ↓
Finetune ResNet Mono w/o Attn 0.83 3.5
Finetune ResNet Mono w/ Attn 0.83 3.3
Frozen ResNet Stereo w/ Attn 0.71 4.3
Scratch ResNet Stereo w/ Attn 0.83 3.2
Finetune ResNet Stereo w/o Attn 0.86 2.5
Finetune ResNet Stereo w/ Attn 0.89 2.5

TABLE I: Comparison of different model configurations in simula-
tion. Performance is normalized relative to the teacher’s performance
and averaged across multiple seeds. Positional error, reported in
centimeters, is also averaged across multiple seeds.

B. Real World Experiments

We deploy our policies on a 7 DoF Kuka LBR iiwa arm with
a 16 DoF Allegro Hand v4 mounted on top. Additionally, we
have two Intel Realsense D415 cameras mounted rigidly to the
table. The setup of our robot system is shown in Figure 8a.
The low-level PD control node runs at 1 kHz for the Kuka
and at 333 Hz for the Allegro. The camera nodes stream RGB
images at 60 Hz, and both the geometric fabric control node
and FGP node run at 60 Hz. Considering that our FGPs are
significantly larger with ResNet encoders, we are able to meet
the 60 Hz control rate by lowering the kernel launch overhead
with CUDA graphs of the FGP. Finally, a state machine node
runs at 60 Hz and orchestrates manual fabric actions and FGP
actions as in [14]. The PD controllers for both the arm and
hand, fabric controller, and state machine run on an NVIDIA
Jetson AGX Orion Developer Kit local to the robot. Camera
nodes and FGP node run on a full desktop PC with an NVIDIA
3090 RTX card. All nodes communicate with each other via
ROS 2. Figure 8b shows our pipeline for deploying the trained
policies in the real world.



Object Pitcher Pringles Coffee Container Cup Cheezit Cleaner Brick Spam Pot Airplane

DextrAH-RGB (Stereo) 80% 100% 80% 100% 80% 40% 40% 100% 100% 100% 60%
DextrAH-RGB (Mono) 40% 100% 80% 100% 60% 80% 20% 100% 80% 100% 60%
DextrAH-G 80% 100% 100% 100% 80% 100% 100% 100% 100% 100% 60%
DexDiffuser [29] - 60% - - 60% 80% 100% - - - 20%
ISAGrasp [4] - 60% - 40% - 80% - - - 80% -
Matak [15] 67% 100% 67% - 0% 0% 100% 100% 0% - -

TABLE II: Success rates of our method compared with prior work.

(a) Stereo Encoder

(b) Cross-Attention Mask

Fig. 7: (a) Our stereo encoder first starts with a pre-trained ResNet-18
encoder where the last two layers are removed. Each image is passed
into the encoder and outputs a 40960-dimensional vector, which is
projected down to a 16384-dimensional layer. These are then split into
128 tokens of 128 dimensions each. The tokens from the left and right
images are passed into a transformer that also receives a learnable
[embed] token. This transformer (2 layers) performs cross-attention
between the two images. The output for the [embed] token is passed
into an MLP layer, yielding the final stereo embedding vector. (b)
The turquoise sections show the cross-attention between tokens. The
[embed] token attends to all other tokens in the sequence. The
tokens from the left image attend to the [embed] token and the
tokens from the right image. Likewise, the tokens from the right
image attend to the [embed] token and the tokens from the left
image.

Single Object Grasping Assessment: One of the most
popular assessments of dexterous grasping ability involves
quantifying the single-object grasp success rate. To estimate
the success rate, we evaluate our policies on 11 objects from
common datasets such as [2] which have been used by other
grasping research. Each object is placed in five different poses
on the table and for each trial, we deploy our RGB grasping
policy. The fraction of poses that lead to a successful grasp
and lift of the object is recorded as the success rate. We run
our policy continually until either the grasp succeeds, or we
experience a failure from which the robot cannot recover. One
of the benefits of being able to run the policy continuously
is that its recurrent architecture allows it to progressively
adapt to the environment. Table II shows how our method
compares with prior works. DextrAH-RGB (stereo) typically
outperforms DextrAH-RGB (mono) for all but one object,
indicating some level of benefit for stereo perception. Overall,
DextrAH-RGB is able to achieve state-of-the-art performance
for most objects. DextrAH-G does outperform in some cases,
but that FGP uses depth images instead of RGB (which is
a more challenging setting). Furthermore, the depth images
for DextrAH-G were specially truncated to avoid background
distractors and incoming sunlight was blocked to avoid eroding
the quality of depth images. DextrAH-RGB does not have this
limitation and is thus a more generalizable solution as it can
work in many lighting conditions and background settings as
shown next and in the accompanying video.

Bin Packing Assessment: We follow the bin packing
assessment protocol and metrics in [14] to more holistically
evaluate the grasping performance. In this assessment, the
robot is tasked with continuously grasping 36 different objects
one-at-a-time and depositing them into a bin. For this task,
we employ a state machine which decides when to pass
FGP actions to the robot. Specifically, it queries the FGP’s
prediction of the object position and if the object is located in
the air, thereby indicating a successful grasp, the state machine
will issue fixed actions to the fabric controller to move the arm
to the bin and deposit the object. Afterwards, another fixed
action is issued to the fabric controller to return the robot to
the forward position after which the FGP is re-engaged. The
metrics that are tracked are the consecutive successes (CS) -
the number of consecutively successful object transports, cycle
time (CT)- the amount of time required for the robot to pick
up the object, deposit it in the bin, and then return back to
the ready position, and success rate (SR) - the percentage of
objects that were successfully transported to the bin. We eval-



(a) Real robot setup (b) State machine for bin packing

Fig. 8: (a) Our real-world robot setup: an Allegro Hand mounted onto a Kuka iiwa robot arm and two Intel RealSense D415 cameras in a
stereo configuration (55 mm baseline). (b) The stereo image pair from the real world, along with robot proprioceptive states, are fed into the
trained student policy. The student’ actions and object-position prediction are passed into the state machine for bin packing. By default, the
state machine passes the student actions into the underlying geometric fabric. However, if the object position prediction is sufficiently high
(indicating a successful grasp), it transitions from using policy actions to a fixed behavior that moves the object above the bin and deposits
it. Afterwards, the state machine returns the robot to its original state and resumes the student policy for the next grasp attempt.

uate DextrAH-RGB (stereo) and DextrAH-RGB (mono) for
this protocol in both controlled indoor lighting conditions and
high-dynamic range conditions (HDR). HDR conditions were
imposed by completely opening window shades and removing
light-blocking boards around the robot. Consequently, natural
sunlight directly streamed into the camera stereo pair creating
a bright background and dark foreground. Such settings were
explictly avoided in [14] since natural light erodes depth
readings and ruins policy performance.

The bin packing performance results for DextrAH-RGB are
shown in Table III along with state-of-the-art DextrAH-G.
DextrAH-RGB significantly improves upon cycle time being
1-2 seconds faster on average over DextrAH-G. In many cases,
objects were successfully transported and the robot returned
in 4 seconds, very close to the estimated human cycle time of
3.63 s in [14]. However, the increased solution speed came
at a cost of less reliability. CS is less by about 2-3 objects
on average SR decreased by about 10% − 14% on average
when compared to DextrAH-G. Encouragingly, there does not
appear to be a substantial difference in performance between
no-HDR and HDR settings, providing empirical evidence that
DextrAH-RGB is, in fact, trained to be robust to lighting
conditions. Finally, discrepancies in numerical performance
between DextrAH-RGB (stereo) and DextrAH-RGB (mono)
are not strikingly apparent. This suggests that the generaliza-
tion error from deploying policies in the real world dominates
the performance gain of stereo over mono in simulation.

Model Type CS (objects) ↑ CT (s) ↓ SR (%) ↑
DextrAH-G 6.56± 2.41 10.66± 0.84 87
DextrAH-RGB (mono, no HDR) 3.24± 1.58 8.63± 1.62 73
DextrAH-RGB (stereo, no HDR) 4.53± 1.75 8.22± 1.10 77
DextrAH-RGB (mono, HDR) 3.83± 1.35 8.18± 1.82 73
DextrAH-RGB (stereo, HDR) 3.24± 0.91 9.07± 1.40 74

TABLE III: Consecutive Successes (CS), Cycle Time (CT), and
Success Rate (SR) for the task of bin picking measured across depth,
monocular RGB, and stereo RGB.

V. DISCUSSION

We have empirically shown that generalizing RGB-based
dexterous grasping policies can be successfully trained in
simulation and deployed in the real world. We believe this
creates a new frontier in end-to-end simulation-based policy
learning for dexterous robots, a highly scalable approach.
Evaluation in the real world revealed that such policies are
not only viable, but also competitive with current state-of-the-
art. DextrAH-RGB expeditiously grasped and transported over
30 objects of novel geometry and texture against unseen back-
grounds. Moreover, DextrAH-RGB yielded consistent perfor-
mance through adverse lighting conditions and succeeded with
both monocular and stereo RGB setups, a strong showcase
for training robust and flexible RGB-based policies in simu-
lation. While DextrAH-RGB was competitive with DextrAH-
G, admittedly DextrAH-RGB did not uniformly improve over
DextrAH-G as we hoped. What we have found empirically
is, sim2real transfer of dexterous manipulation policies is
highly variable and it is currently very hard to predict why
some policies transfer better than others given similar or
exactly the same training pipelines. Sources that contribute
to this variance include reward underspecification, locality of
RL, nuanced changes in teacher training pipeline, changes in
simulation physics, and varying proficiency levels of teacher
reconstruction by student policies. For instance, repeated runs
of the distillation pipeline on the same teacher FGP using
different seeds transfer differently to the real world despite
attaining similar metrics. Given the high-variance, training
more teacher and student FGPs for DextrAH-RGB, is likely
to result in an improved top performer. Thus, the reduction
in DextrAH-RGB’s reliability cannot be squarely attributed
to FGPs consuming RGB over depth. Despite the current
high-variance reality of sim2real for DextrAH, DextrAH-RGB
does perform quite well and sets a new reference point for
RGB-based dexterous grasping policies trained entirely in



simulation, and we expect further improvements in the near
future as we scale the models and training runs.

VI. LIMITATIONS

In this work, we are able to demonstrate remarkable grasp-
ing ability; however, there are some important limitations to
be discussed. Firstly, our usage of the PCA action space
inherits the limitations from DextrAH-G, namely that the focus
on grasping behavior fundamentally limits the dexterity of
the robot. Additionally we imbue behaviors such as collision
avoidance with the table in the underlying geometric fabric
to ensure safety of the system. This can lead to the robot
having difficulty grasping smaller objects as they are closer
to the table and in the future, it would be better to have
this behavior be something that the policy can learn through
sensory inputs. Our distillation method requires a two-stage
pipeline for policy training which can be cumbersome to train.
Further research on various exploration strategies can lead to a
single-stage end-to-end RL pipeline which can lead to a more
streamlined training framework that results in more “vision-
aware” policies. Another key limitation is that our grasping is
not functional. For example, when the policy tries to grasp the
pot, it tries to grasp from its base rather than from its handle
which is the intended design of the object. Lastly, our policies
can only handle one object in the scene which means that it
would not be able to perform the task in a cluttered scenario.

VII. CONCLUSION

We present DextrAH-RGB, end-to-end dexterous grasping
policies from RGB-input trained entirely in simulation. To
achieve this, we first train a teacher policy in simulation that
receives privileged state-information. We then distill this into
an RGB-based student policy. We leverage the real-time ray-
tracing capabilities to offer fast and realistic tiled rendering
for the student. We further make use of geometric fabrics
that exposes an action space to both the teacher and student
policies. This action space is one that allows for safety and
reactivity while also providing a strong inductive bias for
dexterous grasping behaviors. We are able to demonstrate
successful sim-to-real transfer of our end-to-end RGB policies.
Future work includes improving the performance of DextrAH-
RGB in the single object setting and initiate the multi-object
setting as well. We believe our approach is real-world relevant
on its own, can be used to develop more complex skills,
and serve as a source of data for larger pixels-to-action
foundational policies.
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APPENDIX

A. Randomization Parameters

Parameter Initial Setting Terminal Setting
Robot Static Contact Friction Coefficient ∼ U(1, 1) ∼ U(0.3, 1.2)
Robot Dynamic Contact Friction Coefficient ∼ U(1, 1) ∼ U(0.2, 1)
Robot Collision Restitution ∼ U(1, 1) ∼ U(0.8, 1)
Robot Joint PD Stiffness Multiplicative Scaling ∼ U(1, 1) ∼ U(0.5, 2)
Robot Joint PD Damping Multiplicative Scaling ∼ U(1, 1) ∼ U(0.5, 2)
Robot Joint Friction Coefficient ∼ U(0, 0) ∼ U(−10, 10)
Object Static Contact Friction Coefficient ∼ U(1, 1) ∼ U(0.3, 1.2)
Object Dynamic Contact Friction Coefficient ∼ U(1, 1) ∼ U(0.2, 1)
Object Collision Restitution ∼ U(1, 1) ∼ U(0.8, 1)
Object Mass Multiplicative Scaling ∼ U(1, 1) ∼ U(0.5, 3)
Object Disturbance Acceleration ∼ U(0, 0) ∼ U(0, 10)
Object Spawn Width ∼ U(0, 0) ∼ U(0, 0.8)
Object Spawn Height ∼ U(0, 0) ∼ U(0, 1)
Object Measured Position Noise ∼ U(0, 0) ∼ U(0, 0.3)
Object Measured Position Bias ∼ U(0, 0) ∼ U(0, 0.2)
Object Measured Rotation Noise ∼ U(0, 0) ∼ U(0, 0.1)
Object Measured Rotation Bias ∼ U(0, 0) ∼ U(0, 0.08)
Robot Initial Joint Velocity ∼ U(0, 0) ∼ U(0, 1)
Robot Measured Position Noise ∼ U(0, 0) ∼ U(0, 0.08)
Robot Measured Position Bias ∼ U(0, 0) ∼ U(0, 0.08)
Robot Measured Velocity Noise ∼ U(0, 0) ∼ U(0, 0.18)
Robot Measured Velocity Bias ∼ U(0, 0) ∼ U(0, 0.08)
βobj goal −15 −20
βcurl −0.01 −0.05
PD Velocity Target 1 0
Fabric Damping Gain 10 20
Observation Annealing 1 0

TABLE IV: Various physics parameters controlled by automatic domain randomization during learning progression.

Parameter Probability Distribution
Lighting
HDRI Texture Map ∼ U(texture_maps)
Rotation ∼ U(SO(3))
Intensity ∼ U(1000, 4000)
Object
Texture Map ∼ U(texture_maps)
Texture Scale ∼ U(0.7, 5)
Diffuse Tint ∼ U(0, 1)
Roughness ∼ U(0, 1)
Metallic ∼ U(0, 1)
Specular ∼ U(0, 1)
Robot
Roughness ∼ U(0.2, 1)
Metallic ∼ U(0, 0.8)
Specular ∼ U(0, 1)
Table
Texture Map ∼ U(texture_maps)
Texture Rotate ∼ U(0, 2π)
Diffuse Tint ∼ U((0.3, 0.2, 0.1), (0.6, 0.4, 0.2))
Roughness ∼ U(0.3, 0.9)
Specular ∼ U(0, 1)

TABLE V: Various visual domain randomization parameters and their probability distributions

Data Augmentation Type Probability
Random Background 0.5
Color Jitter 1
Random Blur 0.1

TABLE VI: Various data augmentations and their associated probabilities
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